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Misinterpretation and abuse of statistical tests, confidence in-
tervals, and statistical power have been decried for decades, yet
remain rampant. A key problem is that there are no interpreta-
tions of these concepts that are at once simple, intuitive, cor-
rect, and foolproof. Instead, correct use and interpretation of
these statistics requires an attention to detail which seems to tax
the patience of working scientists. This high cognitive demand
has led to an epidemic of shortcut definitions and interpreta-
tions that are simply wrong, sometimes disastrously so—and
yet these misinterpretations dominate much of the scientific lit-
erature.

In light of this problem, we provide definitions and a discus-
sion of basic statistics that are more general and critical than
typically found in traditional introductory expositions. Our goal
is to provide a resource for instructors, researchers, and con-
sumers of statistics whose knowledge of statistical theory and
technique may be limited but who wish to avoid and spot mis-
interpretations. We emphasize how violation of often unstated
analysis protocols (such as selecting analyses for presentation
based on the P-values they produce) can lead to small P-values
even if the declared test hypothesis is correct, and can lead to
large P-values even if that hypothesis is incorrect. We then pro-
vide an explanatory list of 25 misinterpretations of P-values,
confidence intervals, and power. We conclude with guidelines
for improving statistical interpretation and reporting.
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Introduction

Misinterpretation and abuse of statistical tests has been de-
cried for decades, yet remains so rampant that some scientific
journals discourage use of “statistical significance” (classify-
ing results as “significant” or not based on a P-value) (Lang et
al. 1998). One journal now bans all statistical tests and mathe-
matically related procedures such as confidence intervals (Trafi-
mow and Marks 2015), which has led to considerable discussion
and debate about the merits of such bans (e.g., Ashworth 2015;
Flanagan 2015).

Despite such bans, we expect that the statistical methods at
issue will be with us for many years to come. We thus think it
imperative that basic teaching as well as general understanding
of these methods be improved. Toward that end, we attempt to
explain the meaning of significance tests, confidence intervals,
and statistical power in a more general and critical way than
is traditionally done, and then review 25 common misconcep-
tions in light of our explanations. We also discuss a few more
subtle but nonetheless pervasive problems, explaining why it
is important to examine and synthesize all results relating to
a scientific question, rather than focus on individual findings.
We further explain why statistical tests should never constitute
the sole input to inferences or decisions about associations or
effects. Among the many reasons are that, in most scientific set-
tings, the arbitrary classification of results into “significant” and
“nonsignificant” is unnecessary for and often damaging to valid
interpretation of data; and that estimation of the size of effects
and the uncertainty surrounding our estimates will be far more
important for scientific inference and sound judgment than any
such classification.

More detailed discussion of the general issues can be found
in many articles, chapters, and books on statistical methods and
their interpretation (e.g., Altman et al. 2000; Atkins and Jarrett
1979; Cox 1977, 1982; Cox and Hinkley 1974; Freedman et al.
2007; Gibbons and Pratt 1975; Gigerenzer et al. 1990, Ch. 3;
Harlow et al. 1997; Hogben 1957; Kaye and Freedman 2011;
Morrison and Henkel 1970; Oakes 1986; Pratt 1965; Rothman
et al. 2008, Ch. 10; Ware et al. 2009; Ziliak and McCloskey
2008). Specific issues are covered at length in these sources and
in the many peer-reviewed articles that critique common mis-
interpretations of null-hypothesis testing and “statistical signif-
icance” (e.g., Altman and Bland 1995; Anscombe 1990; Bakan
1966; Bandt and Boen 1972; Berkson 1942; Bland and Altman
2015; Chia 1997; Cohen 1994; Evans et al. 1988; Fidler and
Loftus 2009; Gardner and Altman 1986; Gelman 2013; Gelman
and Loken 2014; Gelman and Stern 2006; Gigerenzer 2004;
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Gigerenzer and Marewski 2015; Goodman 1992, 1993, 1999,
2008; Greenland 2011, 2012ab; Greenland and Poole, 2011,
2013ab; Grieve 2015; Harlow et al. 1997; Hoekstra et al. 2006;
Hurlbert and Lombardi 2009; Kaye 1986; Lambdin 2012; Lang
et al. 1998; Langman 1986; LeCoutre et al. 2003; Lew 2012;
Loftus 1996; Matthews and Altman 1996a; Pocock and Ware
2009; Pocock et al. 1987; Poole 1987ab, 2001; Rosnow and
Rosenthal 1989; Rothman 1978, 1986; Rozeboom 1960; Sals-
burg 1985; Schmidt 1996; Schmidt and Hunter 2002; Sterne and
Davey Smith 2001; Thompson 1987; Thompson 2004; Wagen-
makers 2007; Walker 1986; Wood et al. 2014).

Statistical Tests, P-values, and Confidence Intervals: A
Caustic Primer

Statistical Models, Hypotheses, and Tests

Every method of statistical inference depends on a complex
web of assumptions about how data were collected and ana-
lyzed, and how the analysis results were selected for presen-
tation. The full set of assumptions is embodied in a statistical
model that underpins the method. This model is a mathematical
representation of data variability, and thus ideally would capture
accurately all sources of such variability. Many problems arise,
however, because this statistical model often incorporates unre-
alistic or at best unjustified assumptions. This is true even for
so-called “nonparametric” methods, which (like other methods)
depend on assumptions of random sampling or randomization.
These assumptions are often deceptively simple to write math-
ematically, yet in practice are difficult to satisfy and verify, as
they may depend on successful completion of a long sequence
of actions (such as identifying, contacting, obtaining consent
from, obtaining cooperation of, and following up subjects, as
well as adherence to study protocols for treatment allocation,
masking, and data analysis).

There is also a serious problem of defining the scope of a
model, in that it should allow not only for a good representa-
tion of the observed data but also of hypothetical alternative
data that might have been observed. The reference frame for
data that “might have been observed” is often unclear, for exam-
ple if multiple outcome measures or multiple predictive factors
have been measured, and many decisions surrounding analysis
choices have been made after the data were collected—as is in-
variably the case (Gelman and Loken 2014).

The difficulty of understanding and assessing underlying as-
sumptions is exacerbated by the fact that the statistical model is
usually presented in a highly compressed and abstract form—if
presented at all. As a result, many assumptions go unremarked
and are often unrecognized by users as well as consumers of
statistics. Nonetheless, all statistical methods and interpreta-
tions are premised on the model assumptions; that is, on an as-
sumption that the model provides a valid representation of the
variation we would expect to see across data sets, faithfully re-
flecting the circumstances surrounding the study and phenom-
ena occurring within it.

In most applications of statistical testing, one assumption in
the model is a hypothesis that a particular effect has a specific
size, and has been targeted for statistical analysis. (For sim-

plicity, we use the word “effect” when “association or effect”
would arguably be better in allowing for noncausal studies such
as most surveys.) This targeted assumption is called the study
hypothesis or test hypothesis, and the statistical methods used
to evaluate it are called statistical hypothesis tests. Most often,
the targeted effect size is a “null” value representing zero effect
(e.g., that the study treatment makes no difference in average
outcome), in which case the test hypothesis is called the null
hypothesis. Nonetheless, it is also possible to test other effect
sizes. We may also test hypotheses that the effect does or does
not fall within a specific range; for example, we may test the hy-
pothesis that the effect is no greater than a particular amount, in
which case the hypothesis is said to be a one-sided or dividing
hypothesis (Cox 1977, 1982).

Much statistical teaching and practice has developed a strong
(and unhealthy) focus on the idea that the main aim of a study
should be to test null hypotheses. In fact most descriptions of
statistical testing focus only on testing null hypotheses, and
the entire topic has been called “Null Hypothesis Significance
Testing” (NHST). This exclusive focus on null hypotheses con-
tributes to misunderstanding of tests. Adding to the misunder-
standing is that many authors (including R.A. Fisher) use “null
hypothesis” to refer to any test hypothesis, even though this us-
age is at odds with other authors and with ordinary English defi-
nitions of “null”—as are statistical usages of “significance” and
“confidence.”

Uncertainty, Probability, and Statistical Significance

A more refined goal of statistical analysis is to provide an
evaluation of certainty or uncertainty regarding the size of an ef-
fect. It is natural to express such certainty in terms of “probabil-
ities” of hypotheses. In conventional statistical methods, how-
ever, “probability” refers not to hypotheses, but to quantities
that are hypothetical frequencies of data patterns under an as-
sumed statistical model. These methods are thus called frequen-
tist methods, and the hypothetical frequencies they predict are
called “frequency probabilities.” Despite considerable training
to the contrary, many statistically educated scientists revert to
the habit of misinterpreting these frequency probabilities as hy-
pothesis probabilities. (Even more confusingly, the term “likeli-
hood of a parameter value” is reserved by statisticians to refer to
the probability of the observed data given the parameter value;
it does not refer to a probability of the parameter taking on the
given value.)

Nowhere are these problems more rampant than in applica-
tions of a hypothetical frequency called the P-value, also known
as the “observed significance level” for the test hypothesis. Sta-
tistical “significance tests” based on this concept have been a
central part of statistical analyses for centuries (Stigler 1986).
The focus of traditional definitions of P-values and statistical
significance has been on null hypotheses, treating all other as-
sumptions used to compute the P-value as if they were known
to be correct. Recognizing that these other assumptions are of-
ten questionable if not unwarranted, we will adopt a more gen-
eral view of the P-value as a statistical summary of the com-
patibility between the observed data and what we would predict
or expect to see if we knew the entire statistical model (all the
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assumptions used to compute the P-value) were correct.
Specifically, the distance between the data and the model pre-

diction is measured using a test statistic (such as a t-statistic
or a chi-squared statistic). The P-value is then the probability
that the chosen test statistic would have been at least as large
as its observed value if every model assumption were correct,
including the test hypothesis. This definition embodies a cru-
cial point lost in traditional definitions: In logical terms, the P-
value tests all the assumptions about how the data were gen-
erated (the entire model), not just the targeted hypothesis it is
supposed to test (such as a null hypothesis). Furthermore, these
assumptions include far more than what are traditionally pre-
sented as modeling or probability assumptions—they include
assumptions about the conduct of the analysis, for example that
intermediate analysis results were not used to determine which
analyses would be presented.

It is true that the smaller the P-value, the more unusual the
data would be if every single assumption were correct; but a
very small P-value does not tell us which assumption is incor-
rect. For example, the P-value may be very small because the
targeted hypothesis is false; but it may instead (or in addition)
be very small because the study protocols were violated, or be-
cause it was selected for presentation based on its small size.
Conversely, a large P-value indicates only that the data are not
unusual under the model, but does not imply that the model or
any aspect of it (such as the targeted hypothesis) is correct; it
may instead (or in addition) be large because (again) the study
protocols were violated, or because it was selected for presen-
tation based on its large size.

The general definition of a P-value may help one to under-
stand why statistical tests tell us much less than what many think
they do: Not only does a P-value not tell us whether the hypoth-
esis targeted for testing is true or not; it says nothing specif-
ically related to that hypothesis unless we can be completely
assured that every other assumption used for its computation is
correct—an assurance that is lacking in far too many studies.

Nonetheless, the P-value can be viewed as a continuous mea-
sure of the compatibility between the data and the entire model
used to compute it, ranging from 0 for complete incompatibility
to 1 for perfect compatibility, and in this sense may be viewed as
measuring the fit of the model to the data. Too often, however,
the P-value is degraded into a dichotomy in which results are
declared “statistically significant” if P falls on or below a cut-
off (usually 0.05) and declared “nonsignificant” otherwise. The
terms “significance level” and “alpha level” (α) are often used
to refer to the cut-off; however, the term “significance level” in-
vites confusion of the cut-off with the P-value itself. Their dif-
ference is profound: the cut-off value α is supposed to be fixed
in advance and is thus part of the study design, unchanged in
light of the data. In contrast, the P-value is a number computed
from the data and thus an analysis result, unknown until it is
computed.

Moving From Tests to Estimates

We can vary the test hypothesis while leaving other assump-
tions unchanged, to see how the P-value differs across compet-
ing test hypotheses. Usually, these test hypotheses specify dif-

ferent sizes for a targeted effect; for example, we may test the
hypothesis that the average difference between two treatment
groups is zero (the null hypothesis), or that it is 20 or –10 or
any size of interest. The effect size whose test produced P = 1
is the size most compatible with the data (in the sense of pre-
dicting what was in fact observed) if all the other assumptions
used in the test (the statistical model) were correct, and provides
a point estimate of the effect under those assumptions. The ef-
fect sizes whose test produced P > 0.05 will typically define a
range of sizes (e.g., from 11.0 to 19.5) that would be considered
more compatible with the data (in the sense of the observations
being closer to what the model predicted) than sizes outside the
range—again, if the statistical model were correct. This range
corresponds to a 1 − 0.05 = 0.95 or 95% confidence interval,
and provides a convenient way of summarizing the results of
hypothesis tests for many effect sizes. Confidence intervals are
examples of interval estimates.

Neyman (1937) proposed the construction of confidence in-
tervals in this way because they have the following property:
If one calculates, say, 95% confidence intervals repeatedly in
valid applications, 95% of them, on average, will contain (i.e.,
include or cover) the true effect size. Hence, the specified con-
fidence level is called the coverage probability. As Neyman
stressed repeatedly, this coverage probability is a property of
a long sequence of confidence intervals computed from valid
models, rather than a property of any single confidence interval.

Many journals now require confidence intervals, but most
textbooks and studies discuss P-values only for the null hy-
pothesis of no effect. This exclusive focus on null hypotheses
in testing not only contributes to misunderstanding of tests and
underappreciation of estimation, but also obscures the close re-
lationship between P-values and confidence intervals, as well
as the weaknesses they share.

What P-values, Confidence Intervals, and Power
Calculations Don’t Tell Us

Much distortion arises from basic misunderstanding of what
P-values and their relatives (such as confidence intervals) do
not tell us. Therefore, based on the articles in our reference
list, we review prevalent P-value misinterpretations as a way
of moving toward defensible interpretations and presentations.
We adopt the format of Goodman (2008) in providing a list of
misinterpretations that can be used to critically evaluate con-
clusions offered by research reports and reviews. Every one of
the italicized statements in our list has contributed to statistical
distortion of the scientific literature, and we add the emphatic
“No!” to underscore statements that are not only fallacious but
also not “true enough for practical purposes.”

Common Misinterpretations of Single P-values

1. The P-value is the probability that the test hypothesis is
true; for example, if a test of the null hypothesis gave P = 0.01,
the null hypothesis has only a 1% chance of being true; if in-
stead it gave P = 0.40, the null hypothesis has a 40% chance
of being true.—No! The P-value assumes the test hypothesis is
true—it is not a hypothesis probability and may be far from any
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reasonable probability for the test hypothesis. The P-value sim-
ply indicates the degree to which the data conform to the pat-
tern predicted by the test hypothesis and all the other assump-
tions used in the test (the underlying statistical model). Thus
P = 0.01 would indicate that the data are not very close to what
the statistical model (including the test hypothesis) predicted
they should be, while P = 0.40 would indicate that the data
are much closer to the model prediction, allowing for chance
variation.

2. The P-value for the null hypothesis is the probability that
chance alone produced the observed association; for example,
if the P-value for the null hypothesis is 0.08, there is an 8%
probability that chance alone produced the association.—No!
This is a common variation of the first fallacy and it is just as
false. To say that chance alone produced the observed associ-
ation is logically equivalent to asserting that every assumption
used to compute the P-value is correct, including the null hy-
pothesis. Thus to claim that the null P-value is the probability
that chance alone produced the observed association is com-
pletely backwards: The P-value is a probability computed as-
suming chance was operating alone. The absurdity of the com-
mon backwards interpretation might be appreciated by ponder-
ing how the P-value, which is a probability deduced from a set
of assumptions (the statistical model), can possibly refer to the
probability of those assumptions.

Note: One often sees “alone” dropped from this description
(becoming “the P-value for the null hypothesis is the probabil-
ity that chance produced the observed association”), so that the
statement is more ambiguous, but just as wrong.

3. A significant test result (P ≤ 0.05) means that the test hy-
pothesis is false or should be rejected.—No! A small P-value
simply flags the data as being unusual if all the assumptions
used to compute it (including the test hypothesis) were correct;
it may be small because there was a large random error or be-
cause some assumption other than the test hypothesis was vi-
olated (for example, the assumption that this P-value was not
selected for presentation because it was below 0.05). P ≤ 0.05
only means that a discrepancy from the hypothesis prediction
(e.g., no difference between treatment groups) would be as large
or larger than that observed no more than 5% of the time if only
chance were creating the discrepancy (as opposed to a violation
of the test hypothesis or a mistaken assumption).

4. A nonsignificant test result (P > 0.05) means that the test
hypothesis is true or should be accepted.—No! A large P-value
only suggests that the data are not unusual if all the assumptions
used to compute the P-value (including the test hypothesis)
were correct. The same data would also not be unusual under
many other hypotheses. Furthermore, even if the test hypothesis
is wrong, the P-value may be large because it was inflated by a
large random error or because of some other erroneous assump-
tion (e.g., the assumption that this P-value was not selected for
presentation because it was above 0.05). P > 0.05 only means
that a discrepancy from the hypothesis prediction (e.g., no dif-
ference between treatment groups) would be as large or larger
than that observed more than 5% of the time if only chance were

creating the discrepancy.

5. A large P-value is evidence in favor of the test
hypothesis.—No! In fact, any P-value less than 1 implies that
the test hypothesis is not the hypothesis most compatible with
the data, because any other hypothesis with a larger P-value
would be even more compatible with the data. A P-value can-
not be said to favor the test hypothesis except in relation to
those hypotheses with smaller P-values. Furthermore, a large
P-value often indicates only that the data are incapable of dis-
criminating among many competing hypotheses (as would be
seen immediately by examining the range of the confidence in-
terval). For example, many authors will misinterpret P = 0.70
from a test of the null hypothesis as evidence for no effect, when
in fact it indicates that, even though the null hypothesis is com-
patible with the data under the assumptions used to compute
the P-value, it is not the hypothesis most compatible with the
data—that honor would belong to a hypothesis with P = 1.
But even if P = 1, there will be many other hypotheses that are
highly consistent with the data, so that a definitive conclusion of
“no association” cannot be deduced from a P-value, no matter
how large.

6. A null-hypothesis P-value greater than 0.05 means that
no effect was observed, or that absence of an effect was shown
or demonstrated.—No! Observing P > 0.05 for the null hy-
pothesis only means that the null is one among the many hy-
potheses that have P > 0.05. Thus, unless the point estimate
(observed association) equals the null value exactly, it is a mis-
take to conclude from P > 0.05 that a study found “no associ-
ation” or “no evidence” of an effect. If the null P-value is less
than 1 some association must be present in the data, and one
must look at the point estimate to determine the effect size most
compatible with the data under the assumed model.

7. Statistical significance indicates a scientifically or sub-
stantively important relation has been detected.—No! Espe-
cially when a study is large, very minor effects or small as-
sumption violations can lead to statistically significant tests of
the null hypothesis. Again, a small null P-value simply flags
the data as being unusual if all the assumptions used to com-
pute it (including the null hypothesis) were correct; but the way
the data are unusual might be of no clinical interest. One must
look at the confidence interval to determine which effect sizes
of scientific or other substantive (e.g., clinical) importance are
relatively compatible with the data, given the model.

8. Lack of statistical significance indicates that the effect size
is small.—No! Especially when a study is small, even large ef-
fects may be “drowned in noise” and thus fail to be detected as
statistically significant by a statistical test. A large null P-value
simply flags the data as not being unusual if all the assumptions
used to compute it (including the test hypothesis) were correct;
but the same data will also not be unusual under many other
models and hypotheses besides the null. Again, one must look
at the confidence interval to determine whether it includes effect
sizes of importance.
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9. The P-value is the chance of our data occurring if the
test hypothesis is true; for example, P = 0.05 means that the
observed association would occur only 5% of the time under
the test hypothesis.—No! The P-value refers not only to what
we observed, but also observations more extreme than what we
observed (where “extremity” is measured in a particular way).
And again, the P-value refers to a data frequency when all the
assumptions used to compute it are correct. In addition to the
test hypothesis, these assumptions include randomness in sam-
pling, treatment assignment, loss, and missingness, as well as
an assumption that the P-value was not selected for presenta-
tion based on its size or some other aspect of the results.

10. If you reject the test hypothesis because P ≤ 0.05, the
chance you are in error (the chance your “significant finding”
is a false positive) is 5%.—No! To see why this description is
false, suppose the test hypothesis is in fact true. Then, if you
reject it, the chance you are in error is 100%, not 5%. The 5%
refers only to how often you would reject it, and therefore be
in error, over very many uses of the test across different studies
when the test hypothesis and all other assumptions used for the
test are true. It does not refer to your single use of the test, which
may have been thrown off by assumption violations as well as
random errors. This is yet another version of misinterpretation
#1.

11. P = 0.05 and P ≤ 0.05 mean the same thing.—No!
This is like saying reported height = 2 meters and reported
height ≤ 2 meters are the same thing: “height = 2 meters”
would include few people and those people would be considered
tall, whereas “height ≤ 2 meters” would include most people
including small children. Similarly, P = 0.05 would be con-
sidered a borderline result in terms of statistical significance,
whereas P ≤ 0.05 lumps borderline results together with re-
sults very incompatible with the model (e.g., P = 0.0001) thus
rendering its meaning vague, for no good purpose.

12. P-values are properly reported as inequalities (e.g., re-
port “P < 0.02” when P = 0.015 or report P > 0.05 when
P = 0.06 or P = 0.70).—No! This is bad practice because
it makes it difficult or impossible for the reader to accurately
interpret the statistical result. Only when the P-value is very
small (e.g., under 0.001) does an inequality become justifiable:
There is little practical difference among very small P-values
when the assumptions used to compute P-values are not known
with enough certainty to justify such precision, and most meth-
ods for computing P-values are not numerically accurate below
a certain point.

13. Statistical significance is a property of the phenomenon
being studied, and thus statistical tests detect significance.—
No! This misinterpretation is promoted when researchers state
that they have or have not found “evidence of” a statistically
significant effect. The effect being tested either exists or does
not exist. “Statistical significance” is a dichotomous description
of a P-value (that it is below the chosen cut-off) and thus is a
property of a result of a statistical test; it is not a property of the
effect or population being studied.

14. One should always use two-sided P-values.—No! Two-
sided P-values are designed to test hypotheses that the targeted
effect measure equals a specific value (e.g., zero), and is neither
above nor below this value. When however the test hypothesis
of scientific or practical interest is a one-sided (dividing) hy-
pothesis, a one-sided P-value is appropriate. For example, con-
sider the practical question of whether a new drug is at least
as good as the standard drug for increasing survival time. This
question is one-sided, so testing this hypothesis calls for a one-
sided P-value. Nonetheless, because two-sided P-values are the
usual default, it will be important to note when and why a one-
sided P-value is being used instead.

There are other interpretations of P values that are controver-
sial, in that whether a categorical “No!” is warranted depends
on one’s philosophy of statistics and the precise meaning given
to the terms involved. The disputed claims deserve recognition
if one wishes to avoid such controversy.

For example, it has been argued that P-values overstate
evidence against test hypotheses, based on directly compar-
ing P-values against certain quantities (likelihood ratios and
Bayes factors) that play a central role as evidence measures
in Bayesian analysis (Edwards et al. 1963; Berger and Sellke
1987; Edwards 1992; Goodman and Royall 1988; Royall 1997;
Sellke et al. 2001; Goodman 1992, 2005; Wagenmakers 2007).
Nonetheless, many other statisticians do not accept these quan-
tities as gold standards, and instead point out that P-values sum-
marize crucial evidence needed to gauge the error rates of de-
cisions based on statistical tests (even though they are far from
sufficient for making those decisions). Thus, from this frequen-
tist perspective, P-values do not overstate evidence and may
even be considered as measuring one aspect of evidence (Cox
1977, 1982; Lehmann 1986; Senn 2001, 2002a; Mayo and Cox
2006), with 1 − P measuring evidence against the model used
to compute the P-value. See also Murtaugh (2014) and its ac-
companying discussion.

Common Misinterpretations of P-Value Comparisons and Pre-
dictions

Some of the most severe distortions of the scientific litera-
ture produced by statistical testing involve erroneous compari-
son and synthesis of results from different studies or study sub-
groups. Among the worst are:

15. When the same hypothesis is tested in different studies
and none or a minority of the tests are statistically significant
(all P > 0.05), the overall evidence supports the hypothesis.—
No! This belief is often used to claim that a literature supports
no effect when the opposite is case. It reflects a tendency of re-
searchers to “overestimate the power of most research” (Hedges
and Olkin 1980). In reality, every study could fail to reach sta-
tistical significance and yet when combined show a statistically
significant association and persuasive evidence of an effect. For
example, if there were five studies each with P = 0.10, none
would be significant at 0.05 level; but when these P-values are
combined using the Fisher formula (Cox and Hinkley 1974, p.
80), the overall P-value would be 0.01. There are many real ex-
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amples of persuasive evidence for important effects when few
studies or even no study reported “statistically significant” asso-
ciations (e.g., Chalmers and Lau 1996; Maheshwari et al. 2007).
Thus, lack of statistical significance of individual studies should
not be taken as implying that the totality of evidence supports
no effect.

16. When the same hypothesis is tested in two different popu-
lations and the resulting P-values are on opposite sides of 0.05,
the results are conflicting.—No! Statistical tests are sensitive to
many differences between study populations that are irrelevant
to whether their results are in agreement, such as the sizes of
compared groups in each population. As a consequence, two
studies may provide very different P-values for the same test
hypothesis and yet be in perfect agreement (e.g., may show
identical observed associations). For example, suppose we had
two randomized trials A and B of a treatment, identical except
that trial A had a known standard error of 2 for the mean dif-
ference between treatment groups whereas trial B had a known
standard error of 1 for the difference. If both trials observed a
difference between treatment groups of exactly 3, the usual nor-
mal test would produce P = 0.13 in A but P = 0.003 in B.
Despite their difference in P-values, the test of the hypothesis
of no difference in effect across studies would have P = 1, re-
flecting the perfect agreement of the observed mean differences
from the studies. Differences between results must be evaluated
by directly, for example by estimating and testing those differ-
ences to produce a confidence interval and a P-value comparing
the results (often called analysis of heterogeneity, interaction, or
modification).

17. When the same hypothesis is tested in two different pop-
ulations and the same P-values are obtained, the results are
in agreement.—No! Again, tests are sensitive to many differ-
ences between populations that are irrelevant to whether their
results are in agreement. Two different studies may even exhibit
identical P-values for testing the same hypothesis yet also ex-
hibit clearly different observed associations. For example, sup-
pose randomized experiment A observed a mean difference be-
tween treatment groups of 3.00 with standard error 1.00, while
B observed a mean difference of 12.00 with standard error 4.00.
Then the standard normal test would produce P = 0.003 in
both; yet the test of the hypothesis of no difference in effect
across studies gives P = 0.03, reflecting the large difference
(12.00− 3.00 = 9.00) between the mean differences.

18. If one observes a small P-value, there is a good chance
that the next study will produce a P-value at least as small for
the same hypothesis.—No! This is false even under the ideal
condition that both studies are independent and all assumptions
including the test hypothesis are correct in both studies. In that
case, if (say) one observes P = 0.03, the chance that the new
study will show P ≤ 0.03 is only 3%; thus the chance the
new study will show a P-value as small or smaller (the “repli-
cation probability”) is exactly the observed P-value! If on the
other hand the small P-value arose solely because the true ef-
fect exactly equaled its observed estimate, there would be a 50%
chance that a repeat experiment of identical design would have

a larger P-value (Goodman 1992). In general, the size of the
new P-value will be extremely sensitive to the study size and
the extent to which the test hypothesis or other assumptions are
violated in the new study (Senn 2002a); in particular, P may be
very small or very large depending on whether the study and the
violations are large or small.

Finally, although it is (we hope obviously) wrong to do so,
one sometimes sees the null hypothesis compared with another
(alternative) hypothesis using a two-sided P-value for the null
and a one-sided P-value for the alternative. This comparison is
biased in favor of the null in that the two-sided test will falsely
reject the null only half as often as the one-sided test will falsely
reject the alternative (again, under all the assumptions used for
testing).

Common Misinterpretations of Confidence Intervals

Most of the above misinterpretations translate into an anal-
ogous misinterpretation for confidence intervals. For example,
another misinterpretation of P > 0.05 is that it means the test
hypothesis has only a 5% chance of being false, which in terms
of a confidence interval becomes the common fallacy:

19. The specific 95% confidence interval presented by a
study has a 95% chance of containing the true effect size.—No!
A reported confidence interval is a range between two numbers.
The frequency with which an observed interval (e.g., 0.72 to
2.88) contains the true effect is either 100% if the true effect
is within the interval or 0% if not; the 95% refers only to how
often 95% confidence intervals computed from very many stud-
ies would contain the true size if all the assumptions used to
compute the intervals were correct. It is possible to compute
an interval that can be interpreted as having 95% probability of
containing the true value; nonetheless, such computations re-
quire not only the assumptions used to compute the confidence
interval, but also further assumptions about the size of effects in
the model. These further assumptions are summarized in what is
called a prior distribution, and the resulting intervals are usually
called Bayesian posterior (or credible) intervals to distinguish
them from confidence intervals (e.g., see Rothman et al. 2008,
Ch. 13 and 18).

Symmetrically, the misinterpretation of a small P-value as
disproving the test hypothesis could be translated into:

20. An effect size outside the 95% confidence interval has
been refuted (or excluded) by the data.—No! As with the P-
value, the confidence interval is computed from many assump-
tions, the violation of which may have led to the results. Thus it
is the combination of the data with the assumptions, along with
the arbitrary 95% criterion, that are needed to declare an ef-
fect size outside the interval is in some way incompatible with
the observations. Even then, judgements as extreme as saying
the effect size has been refuted or excluded will require even
stronger conditions.

As with P-values, nave comparison of confidence intervals
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can be highly misleading:

21. If two confidence intervals overlap, the difference be-
tween two estimates or studies is not significant.—No! The 95%
confidence intervals from two subgroups or studies may over-
lap substantially and yet the test for difference between them
may still produce P < 0.05. Suppose for example, two 95%
confidence intervals for means from normal populations with
known variances are (1.04, 4.96) and (4.16, 19.84); these inter-
vals overlap, yet the test of the hypothesis of no difference in
effect across studies gives P = 0.03. As with P-values, com-
parison between groups requires statistics that directly test and
estimate the differences across groups. It can, however, be noted
that if the two 95% confidence intervals fail to overlap, then
when using the same assumptions used to compute the confi-
dence intervals we will find P < 0.05 for the difference; and
if one of the 95% intervals contains the point estimate from the
other group or study, we will find P > 0.05 for the difference.

Finally, as with P-values, the replication properties of confi-
dence intervals are usually misunderstood:

22. An observed 95% confidence interval predicts that 95%
of the estimates from future studies will fall inside the observed
interval.—No! This statement is wrong in several ways. Most
importantly, under the model, 95% is the frequency with which
other unobserved intervals will contain the true effect, not how
frequently the one interval being presented will contain future
estimates. In fact, even under ideal conditions the chance that
a future estimate will fall within the current interval will usu-
ally be much less than 95%. For example, if two independent
studies of the same quantity provide unbiased normal point es-
timates with the same standard errors, the chance that the 95%
confidence interval for the first study contains the point estimate
from the second is 83% (which is the chance that the difference
between the two estimates is less than 1.96 standard errors).
Again, an observed interval either does or does not contain the
true effect; the 95% refers only to how often 95% confidence
intervals computed from very many studies would contain the
true effect if all the assumptions used to compute the intervals
were correct.

23. If one 95% confidence interval includes the null value
and another excludes that value, the interval excluding the null
is the more precise one.—No! When the model is correct, pre-
cision of statistical estimation is measured directly by confi-
dence interval width (measured on the appropriate scale). It is
not a matter of inclusion or exclusion of the null or any other
value. Consider two 95% confidence intervals for a difference
in means, one with limits of 5 and 40, the other with limits of
−5 and 10. The first interval excludes the null value of 0, but is
30 units wide. The second includes the null value, but is half as
wide and therefore much more precise.

In addition to the above misinterpretations, 95% confidence
intervals force the 0.05-level cutoff on the reader, lumping to-
gether all effect sizes with P > 0.05, and in this way are as
bad as presenting P-values as dichotomies. Nonetheless, many

authors agree that confidence intervals are superior to tests and
P-values because they allow one to shift focus away from the
null hypothesis, toward the full range of effect sizes compati-
ble with the data—a shift recommended by many authors and
a growing number of journals. Another way to bring attention
to nonnull hypotheses is to present their P-values; for example,
one could provide or demand P-values for those effect sizes
that are recognized as scientifically reasonable alternatives to
the null.

As with P-values, further cautions are needed to avoid misin-
terpreting confidence intervals as providing sharp answers when
none are warranted. The hypothesis which says the point esti-
mate is the correct effect will have the largest P-value (P = 1
in most cases), and hypotheses inside a confidence interval will
have higher P-values than hypotheses outside the interval. The
P-values will vary greatly, however, among hypotheses inside
the interval, as well as among hypotheses on the outside. Also,
two hypotheses may have nearly equal P-values even though
one of the hypotheses is inside the interval and the other is out-
side. Thus, if we use P-values to measure compatibility of hy-
potheses with data and wish to compare hypotheses with this
measure, we need to examine their P-values directly, not sim-
ply ask whether the hypotheses are inside or outside the inter-
val. This need is particularly acute when (as usual) one of the
hypotheses under scrutiny is a null hypothesis.

Common Misinterpretations of Power

The power of a test to detect a correct alternative hypothesis
is the pre-study probability that the test will reject the test hy-
pothesis (e.g., the probability that P will not exceed a prespec-
ified cut-off such as 0.05). (The corresponding prestudy proba-
bility of failing to reject the test hypothesis when the alternative
is correct is one minus the power, also known as the Type-II
or beta error rate; see Lehmann 1986.) As with P-values and
confidence intervals, this probability is defined over repetitions
of the same study design and so is a frequency probability. One
source of reasonable alternative hypotheses are the effect sizes
that were used to compute power in the study proposal. Pre-
study power calculations do not, however, measure the com-
patibility of these alternatives with the data actually observed,
while power calculated from the observed data is a direct (if
obscure) transformation of the null P-value and so provides no
test of the alternatives. Thus, presentation of power does not
obviate the need to provide interval estimates and direct tests of
the alternatives.

For these reasons, many authors have condemned use of
power to interpret estimates and statistical tests (e.g., Cox 1958;
Smith and Bates 1992; Goodman 1994; Goodman and Berlin
1994; Hoenig and Heisey 2001; Senn 2002b; Greenland 2012a),
arguing that (in contrast to confidence intervals) it distracts at-
tention from direct comparisons of hypotheses and introduces
new misinterpretations, such as:

24. If you accept the null hypothesis because the null P-
value exceeds 0.05 and the power of your test is 90%, the chance
you are in error (the chance that your finding is a false nega-
tive) is 10%.—No! If the null hypothesis is false and you accept
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it, the chance you are in error is 100%, not 10%. Conversely, if
the null hypothesis is true and you accept it, the chance you are
in error is 0%. The 10% refers only to how often you would be
in error over very many uses of the test across different studies
when the particular alternative used to compute power is correct
and all other assumptions used for the test are correct in all the
studies. It does not refer to your single use of the test or your er-
ror rate under any alternative effect size other than the one used
to compute power.

It can be especially misleading to compare results for two
hypotheses by presenting a test or P-value for one and power
for the other. For example, testing the null by seeing whether
P ≤ 0.05 with a power less than 1−0.05 = 0.95 for the alterna-
tive (as done routinely) will bias the comparison in favor of the
null because it entails a lower probability of incorrectly reject-
ing the null (0.05) than of incorrectly accepting the null when
the alternative is correct. Thus, claims about relative support or
evidence need to be based on direct and comparable measures
of support or evidence for both hypotheses, otherwise mistakes
like the following will occur:

25. If the null P-value exceeds 0.05 and the power of this
test is 90% at an alternative, the results support the null over
the alternative.—This claim seems intuitive to many, but coun-
terexamples are easy to construct in which the null P-value is
between 0.05 and 0.10, and yet there are alternatives whose own
P-value exceeds 0.10 and for which the power is 0.90. Parallel
results ensue for other accepted measures of compatibility, ev-
idence, and support, indicating that the data show lower com-
patibility with and more evidence against the null than the alter-
native, despite the fact that the null P-value is “not significant”
at the 0.05 alpha level and the power against the alternative is
“very high” (Greenland, 2012a).

Despite its shortcomings for interpreting current data, power
can be useful for designing studies and for understanding why
replication of “statistical significance” will often fail even under
ideal conditions. Studies are often designed or claimed to have
80% power against a key alternative when using a 0.05 signifi-
cance level, although in execution often have less power due to
unanticipated problems such as low subject recruitment. Thus,
if the alternative is correct and the actual power of two studies
is 80%, the chance that the studies will both show P ≤ 0.05
will at best be only 0.80(0.80) = 64%; furthermore, the chance
that one study shows P ≤ 0.05 and the other does not (and
thus will be misinterpreted as showing conflicting results) is
2(0.80)0.20 = 32% or about 1 chance in 3. Similar calculations
taking account of typical problems suggest that one could antic-
ipate a “replication crisis” even if there were no publication or
reporting bias, simply because current design and testing con-
ventions treat individual study results as dichotomous outputs
of “significant”/“nonsignificant” or “reject”/“accept.”

A Statistical Model is Much More Than an Equation with
Greek Letters

The above list could be expanded by reviewing the research
literature. We will however turn to direct discussion of an issue
that has been receiving more attention of late, yet is still widely
overlooked or interpreted too narrowly in statistical teaching
and presentations: That the statistical model used to obtain the
results is correct.

Too often, the full statistical model is treated as a simple re-
gression or structural equation in which effects are represented
by parameters denoted by Greek letters. “Model checking” is
then limited to tests of fit or testing additional terms for the
model. Yet these tests of fit themselves make further assump-
tions that should be seen as part of the full model. For example,
all common tests and confidence intervals depend on assump-
tions of random selection for observation or treatment and ran-
dom loss or missingness within levels of controlled covariates.
These assumptions have gradually come under scrutiny via sen-
sitivity and bias analysis (e.g., Lash et al. 2014), but such meth-
ods remain far removed from the basic statistical training given
to most researchers.

Less often stated is the even more crucial assumption that
the analyses themselves were not guided toward finding non-
significance or significance (analysis bias), and that the analy-
sis results were not reported based on their nonsignificance or
significance (reporting bias and publication bias). Selective re-
porting renders false even the limited ideal meanings of statis-
tical significance, P-values, and confidence intervals. Because
author decisions to report and editorial decisions to publish re-
sults often depend on whether the P-value is above or below
0.05, selective reporting has been identified as a major problem
in large segments of the scientific literature (Dwan et al. 2013;
Page et al. 2014; You et al. 2012).

Although this selection problem has also been subject to sen-
sitivity analysis, there has been a bias in studies of reporting and
publication bias: It is usually assumed that these biases favor
significance. This assumption is of course correct when (as is
often the case) researchers select results for presentation when
P ≤ 0.05, a practice that tends to exaggerate associations (But-
ton et al. 2013; Eyding et al. 2010; Land 1980; Land 1981).
Nonetheless, bias in favor of reporting P ≤ 0.05 is not always
plausible let alone supported by evidence or common sense. For
example, one might expect selection for P > 0.05 in publi-
cations funded by those with stakes in acceptance of the null
hypothesis (a practice which tends to understate associations);
in accord with that expectation, some empirical studies have
observed smaller estimates and “nonsignificance” more often
in such publications than in other studies (Eyding et al. 2010;
Greenland 2009; Xu et al. 2013).

Addressing such problems would require far more political
will and effort than addressing misinterpretation of statistics,
such as enforcing registration of trials, along with open data
and analysis code from all completed studies (as in the AllTri-
als initiative, http://www.alltrials.net/ ). In the meantime, read-
ers are advised to consider the entire context in which research
reports are produced and appear when interpreting the statistics
and conclusions offered by the reports.
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Conclusions

Upon realizing that statistical tests are usually misinterpreted,
one may wonder what if anything these tests do for science.
They were originally intended to account for random variability
as a source of error, thereby sounding a note of caution against
overinterpretation of observed associations as true effects or as
stronger evidence against null hypotheses than was warranted.
But before long that use was turned on its head to provide fal-
lacious support for null hypotheses in the form of “failure to
achieve” or “failure to attain” statistical significance.

We have no doubt that the founders of modern statistical
testing would be horrified by common treatments of their in-
vention. In their first paper describing their binary approach to
statistical testing, Neyman and Pearson (1928) wrote that “it
is doubtful whether the knowledge that [a P-value] was really
0.03 (or 0.06), rather than 0.05 . . . would in fact ever modify
our judgment” and that “The tests themselves give no final ver-
dict, but as tools help the worker who is using them to form
his final decision.” Pearson (1955) later added, “No doubt we
could more aptly have said, ‘his final or provisional decision’.”
Fisher (1956, p. 42) went further, saying “No scientific worker
has a fixed level of significance at which from year to year, and
in all circumstances, he rejects hypotheses; he rather gives his
mind to each particular case in the light of his evidence and
his ideas.” Yet fallacious and ritualistic use of tests continued
to spread, including beliefs that whether P was above or below
0.05 was a universal arbiter of discovery. Thus by 1965, Hill
(1965) lamented that “too often we weaken our capacity to in-
terpret data and to take reasonable decisions whatever the value
of P . And far too often we deduce ‘no difference’ from ‘no sig-
nificant difference’.”

In response, it has been argued that some misinterpreta-
tions are harmless in tightly controlled experiments on well-
understood systems, where the test hypothesis may have special
support from established theories (e.g., Mendelian genetics) and
in which every other assumption (such as random allocation) is
forced to hold by careful design and execution of the study. But
it has long been asserted that the harms of statistical testing in
more uncontrollable and amorphous research settings (such as
social-science, health, and medical fields) have far outweighed
its benefits, leading to calls for banning such tests in research
reports—again, with one journal banning confidence intervals
as well as P-values (Trafimow and Marks 2015).

Given, however, the deep entrenchment of statistical testing,
as well as the absence of generally accepted alternative meth-
ods, there have been many attempts to salvage P-values by de-
taching them from their use in significance tests. One approach
is to focus on P-values as continuous measures of compatibility,
as described earlier. Although this approach has its own limita-
tions (as described in points 1, 2, 5, 9, 17, and 18), it avoids
misconceptions arising from comparison of P-values with ar-
bitrary cutoffs such as 0.05 (as described in points 3, 4, 6–8,
10–13, 15, 16, 21, and 23–25). Another approach is to teach and
use correct relations of P-values to hypothesis probabilities. For
example, under common statistical models, one-sided P-values
can provide lower bounds on probabilities for hypotheses about
effect directions (Casella and Berger 1987ab; Greenland and

Poole 2013ab). Whether such reinterpretations can eventually
replace common misinterpretations to good effect remains to be
seen.

A shift in emphasis from hypothesis testing to estimation has
been promoted as a simple and relatively safe way to improve
practice (Yates 1951; Rothman 1978; Altman et al. 2000; Poole
2001; Cumming 2011), resulting in increasing use of confidence
intervals and editorial demands for them; nonetheless, this shift
has brought to the fore misinterpretations of intervals such as
19–23 above (Morey et al. 2015). Other approaches combine
tests of the null with further calculations involving both null
and alternative hypotheses (Rosenthal and Rubin 1994; Mayo
and Spanos 2006); such calculations may, however, may bring
with them further misinterpretations similar to those described
above for power, as well as greater complexity.

Meanwhile, in the hopes of minimizing harms of current
practice, we can offer several guidelines for users and readers
of statistics, and re-emphasize some key warnings from our list
of misinterpretations:

a) Correct and careful interpretation of statistical tests de-
mands examining the sizes of effect estimates and confi-
dence limits, as well as precise P-values (not just whether
P-values are above or below 0.05 or some other threshold).

b) Careful interpretation also demands critical examination
of the assumptions and conventions used for the statisti-
cal analysis—not just the usual statistical assumptions, but
also the hidden assumptions about how results were gener-
ated and chosen for presentation.

c) It is simply false to claim that statistically nonsignifi-
cant results support a test hypothesis, because the same
results may be even more compatible with alternative
hypotheses—even if the power of the test is high for those
alternatives.

d) Interval estimates aid in evaluating whether the data are
capable of discriminating among various hypotheses about
effect sizes, or whether statistical results have been mis-
represented as supporting one hypothesis when those re-
sults are better explained by other hypotheses (see points
4–6). We caution however that confidence intervals are of-
ten only a first step in these tasks. To compare hypotheses
in light of the data and the statistical model it may be nec-
essary to calculate the P-value (or relative likelihood) of
each hypothesis. We further caution that confidence inter-
vals provide only a best-case measure of the uncertainty
or ambiguity left by the data, insofar as they depend on an
uncertain statistical model.

e) Correct statistical evaluation of multiple studies requires a
pooled analysis or meta-analysis that deals correctly with
study biases (Whitehead 2002; Borenstein et al. 2009;
Chen and Peace 2013; Cooper et al. 2009; Greenland and
O’Rourke 2008; Petitti 2000; Schmidt and Hunter 2014;
Sterne 2009). Even when this is done, however, all the ear-
lier cautions apply. Furthermore, the outcome of any statis-
tical procedure is but one of many considerations that must
be evaluated when examining the totality of evidence. In
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particular, statistical significance is neither necessary nor
sufficient for determining the scientific or practical signif-
icance of a set of observations. This view was affirmed
unanimously by the U.S. Supreme Court, (Matrixx Initia-
tives, Inc., et al. v. Siracusano et al. No. 091156. Argued
January 10, 2011, Decided March 22, 2011), and can be
seen in our earlier quotes from Neyman and Pearson.

f) Any opinion offered about the probability, likelihood, cer-
tainty, or similar property for a hypothesis cannot be de-
rived from statistical methods alone. In particular, signifi-
cance tests and confidence intervals do not by themselves
provide a logically sound basis for concluding an effect
is present or absent with certainty or a given probability.
This point should be borne in mind whenever one sees
a conclusion framed as a statement of probability, likeli-
hood, or certainty about a hypothesis. Information about
the hypothesis beyond that contained in the analyzed data
and in conventional statistical models (which give only
data probabilities) must be used to reach such a conclu-
sion; that information should be explicitly acknowledged
and described by those offering the conclusion. Bayesian
statistics offers methods that attempt to incorporate the
needed information directly into the statistical model; they
have not however achieved the popularity of P-values and
confidence intervals, in part because of philosophical ob-
jections and in part because no conventions have become
established for their use.

g) All statistical methods (whether frequentist or Bayesian,
or for testing or estimation, or for inference or decision)
make extensive assumptions about the sequence of events
that led to the results presented—not only in the data gen-
eration, but in the analysis choices. Thus, to allow criti-
cal evaluation, research reports (including meta-analyses)
should describe in detail the full sequence of events that
led to the statistics presented, including the motivation for
the study, its design, the original analysis plan, the criteria
used to include and exclude subjects (or studies) and data,
and a thorough description of all the analyses that were
conducted.

In closing, we note that no statistical method is immune to
misinterpretation and misuse, but prudent users of statistics will
avoid approaches especially prone to serious abuse. In this re-
gard, we join others in singling out the degradation of P-values
into “significant” and “nonsignificant” as an especially perni-
cious statistical practice (Weinberg 2001).
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E.S.J., Munafó, M.R. (2013), “Power Failure: Why Small Sample Size Un-
dermines the Reliability of Neuroscience,” Nature Reviews Neuroscience,
14, 365–376.

Casella, G., and Berger, R.L. (1987a), “Reconciling Bayesian and Frequentist
Evidence in the One-Sided Testing Problem,” Journal of the American Sta-
tistical Association, 82, 106–111.

Casella, G., and Berger, R.L. (1987b), “Comment,” Stat Sci, 2, 344–417.

Chalmers, T.C., and Lau, J. (1996), “Changes in Clinical Trials Mandated by
the Advent of Meta-analysis,” Statistics in Medicine, 15, 1263–1268.

Chen, D.-G., and Peace, K.E. (2013), Applied Meta-Analysis with R, New York:
Chapman & Hall/CRC.

Chia, K.S. (1997), “‘Significant-itis’An Obsession with the P-Value,” Scandi-
navian Journal of Work, Environment & Health, 23, 152–154.

Cooper, H., Hedges, L.V., and Valentine, J.C. (2009), The Handbook of Re-
search Synthesis and Meta-Analysis, Thousand Oaks, CA: Sage.

Cohen, J. (1994), “The Earth is Round ( p < 0.05),” American Psychology, 47,
997–1003.

Cornfield, J. (1966), “Sequential Trials, Sequential Analysis, and the Likelihood
Principle,” The American Statistician, 25, 617–657.

Cox, D.R. (1958), The Planning of Experiments, New York: Wiley, p. 161.

(1977), “The Role of Significance Tests” (with discussion), Scandina-
vian Journal of Statistics, 4, 49–70.

(1982), “Statistical Significance Tests,” British Journal of Clinical
Pharmacology, 14, 325–331.

Cox, D.R., and Hinkley, D.V. (1974), Theoretical Statistics, New York: Chap-
man and Hall.

Cumming, G. (2011), Understanding the New Statistics: Effect Sizes, Confi-
dence Intervals, and Meta-Analysis, London: Routledge.

Dickersin, K. (1990), “The Existence of Publication Bias and Risk Factors for
its Occurrence,” Journal of the American Medical Association, 263, 1385–
1389.

Dwan, K., Gamble, C., Williamson, P.R., Kirkham, J.J.; Reporting Bias Group
(2013), “Systematic Review of the Empirical Evidence of Study Publica-
tion Bias and Outcome Reporting Bias—An Updated Review,” PLoS One,
8:e66844.

Edwards, A.W.F. (1992), Likelihood (2nd ed.), Baltimore: Johns Hopkins Uni-
versity Press.

Edwards, W., Lindman, H., and Savage, L.J. (1963), “Bayesian Statistical Infer-
ence for Psychological Research,” Psychological Review, 70, 193–242.

Evans, S.J.W., Mills, P., and Dawson, J. (1988), “The End of the P-value?”
British Heart Journal, 60,177–180.

Eyding, D., Lelgemann, M., Grouven, U., Härter, M., Kromp, M., Kaiser, T.,
Kerekes, M.F., Gerken, M., and Wieseler, B. (2010), “Reboxetine for Acute
Treatment of Major Depression: Systematic Review and Meta-analysis of
Published and Unpublished Placebo and Selective Serotonin Reuptake In-

10 Online Supplement to the ASA Statement on Statistical Significance and P-values

http://editorresources.taylorandfrancisgroup.com/veto-on-the-use-of-null-hypothesis-testing-and-p-intervals-right-or-wrong/
http://editorresources.taylorandfrancisgroup.com/veto-on-the-use-of-null-hypothesis-testing-and-p-intervals-right-or-wrong/


hibitor Controlled Trials,” British Medical Journal, 341, c4737.

Fidler, F., and Loftus, G.R. (2009), “Why Figures with Error Bars Should Re-
place p Values: Some Conceptual Arguments and Empirical Demonstra-
tions,” Journal of Psychology, 217, 27–37.

Fisher, R. A. (1956), Statistical Methods and Scientific Inference, Edinburgh,
UK: Oliver & Boyd.

Flanagan, O. (2015), “Journal’s Ban on Null Hypothesis Significance Testing:
Reactions from the Statistical Arena,” Stats Life online, accessed 27 Feb.
2016.

Freedman, D.A., Pisani, R., and Purves, R. (2007), Statistics (4th ed.), New
York: Norton.

Gardner, M.A., and Altman, D.G. (1986), “Confidence Intervals Rather than P
Values: Estimation Rather than Hypothesis Testing,” British Medical Jour-
nal, 292, 746–750.

Gelman, A. (2013), “P-Values and Statistical Practice,” Epidemiology, 24, 69–
72.

Gelman, A., and Loken, E. (2014), “The Statistical Crisis in Science: Data-
Dependent Analysis—A ‘Garden of Forking Paths’—Explains why Many
Statistically Significant Comparisons Don’t Hold Up,” American Sci-
entist, 102, 460–465. Erratum at http://andrewgelman.com/2014/10/14/
didnt-say-part-2/ , accessed Feb. 27, 2016.

Gelman, A., and Stern, H.S. (2006), “The Difference Between ‘Significant’ and
‘Not Significant’ is not Itself Statistically Significant,” The American Statis-
tician, 60, 328–331.

Gibbons, J.D., and Pratt, J.W. (1975), “P-Values: Interpretation and Methodol-
ogy,” The American Statistician, 29, 20–25.

Gigerenzer, G. (2004), “Mindless Statistics,” Journal of Socioeconomics, 33,
567–606.

Gigerenzer, G., and Marewski, J.N. (2015), “Surrogate Science: The Idol of
a Universal Method for Scientific Inference,” Journal of Management, 41,
421–440.

Gigerenzer, G., Swijtink, Z., Porter, T., Daston, L., Beatty, J., and Kruger, L.
(1990), The Empire of Chance: How Probability Changed Science and Ev-
eryday Life, New York: Cambridge University Press.

Goodman, S.N. (1992), “A Comment on Replication, p-values and Evidence,”
Statistics in Medicine, 11, 875–879.

(1993), “P-values, Hypothesis Tests and Likelihood: Implications for
Epidemiology of a Neglected Historical Debate,” American Journal of Epi-
demiology, 137, 485–496.

(1994), Letter to the editor re Smith and Bates, Epidemiology, 5, 266–
268.

(1999), “Towards Evidence-Based Medical Statistics, I: The P-value
Fallacy,” Annals of Internal Medicine, 130, 995–1004.

(2005), “Introduction to Bayesian Methods I: Measuring the Strength
of Evidence,” Clinical Trials, 2, 282–290.

(2008), “A Dirty Dozen: Twelve P-value Misconceptions,” Seminars in
Hematology, 45, 135–140.

Goodman, S.N., and Berlin, J. (1994), “The Use of Predicted Confidence Inter-
vals when Planning Experiments and the Misuse of Power when Interpreting
Results,” Annals of Internal Medicine, 121, 200–206.

Goodman, S.N., and Royall, R. (1988), “Evidence and Scientific Research,”
American Journal of Public Health, 78, 1568–1574.

Greenland, S. (2009), “Dealing with Uncertainty About iInvestigator Bias: Dis-
closure is Informative,” Journal of Epidemiology and Community Health,
63, 593–598.

(2011), “Null Misinterpretation in Statistical Testing and its Impact on
Health Risk Assessment,” Preventive Medicine, 53, 225–228.

(2012a), “Nonsignificance Plus High Power Does not Imply Support
for the Null over the Alternative,” Annals of Epidemiology, 22, 364–368.

(2012b), “Transparency and Disclosure, Neutrality and Balance: Shared
Values or Just Shared Words?” Journal of Epidemiology and Community
Health, 66, 967–970.

Greenland, S., and O’Rourke, K. (2008), “Meta-analysis,” in Modern Epidemi-
ology (3rd ed.), Rothman, K.J., Greenland, S., Lash, T.L., eds., Philadelphia:
Lippincott-Wolters-Kluwer, pp. 682–685.

Greenland, S., and Poole, C. (2011), “Problems in Common Interpretations of
Statistics in Scientific Articles, Expert Reports, and Testimony,” Jurimetrics,
51, 113–129.

(2013a), “Living with P-values: Resurrecting a Bayesian Perspective
on Frequentist Statistics,” Epidemiology, 24, 62–68.

(2013b), “Living with Statistics in Observational Research,” Epidemi-
ology, 24, 73–78.

Grieve, A.P. (2015), “How to Test Hypotheses if You Must,” Pharmaceutical
Statistics, 14, 139–150.

Hanley, J.A. (1994), Letter to the Editor re Smith and Bates,” Epidemiology, 5,
264–266.

Harlow, L.L., Mulaik, S.A., and Steiger, J.H. (1997), “What if There Were No
Significance Tests?” Psychology Press.

Hauer, E. (2003), “The Harm Done by Tests of Significance,” Accident Analysis
& Prevention, 36, 495–500.

Hedges, L.V., and Olkin, I. (1980), “Vote-Counting Methods in Research Syn-
thesis,” Psychological Bulletin, 88, 359–369.

Hill, A.B. (1965), “The Environment and Disease: Association or Causation?”
Proceedings of the Royal Society of Medicine, 58, 295–300.

Hoekstra, R., Finch, S., Kiers, H.A.L., and Johnson, A. (2006), “Probability as
Certainty: Dichotomous Thinking and the Misuse of p-Values,” Psycholog-
ical Bulletin Review, 13, 1033–1037.

Hoenig, J.M., and Heisey, D.M. (2001), “The Abuse of Power: The Pervasive
Fallacy of Power Calculations for Data Analysis,” The American Statisti-
cian, 55, 19–24.

Hogben, L. (1957), Statistical Theory, London: Allen and Unwin.

Hurlbert, S.H., and Lombardi, C.M. (2009), “Final Collapse of the Neyman-
Pearson Decision Theoretic Framework and Rise of the neoFisherian,” An-
nales Zoologici Fennici, 46, 311–349.

Kaye, D.H. (1986), “Is Proof of Statistical Significance Relevant?” Washington
Law Review, 61, 1333–1366.

Kaye, D.H., and Freedman, D.A. (2011), “Reference Guide on Statistics,” in
Reference Manual on Scientific Evidence (3rd ed.), Washington, DC: Fed-
eral Judicial Center, 211–302.

Kline, R.B. (2013), Beyond Significance Testing: Statistics Reform in the Be-
havioral Sciences, Washington, DC: American Psychological Association.

Lambdin, C. (2012), “Significance Tests as Sorcery: Science is Empirical—
Significance Tests are Not,” Theory & Psychology, 22, 67–90.

Land, C.E. (1980), “Estimating Cancer Risks from Low Doses of Ionizing Ra-
diation,” Science, 209, 1197–1203.

(1981), “Statistical Limitations in Relation to Sample Size,” Environ-
mental Health Perspectives, 42, 15–21.

Lang, J.M., Rothman, K.J., and Cann, C.I. (1998), “That Confounded P-Value,”
Epidemiology, 9, 7–8.

Langman, M.J.S. (1986), “Towards Estimation and Confidence Intervals,” BMJ,
292, 716.

Lash, T.L., Fox, M.P., Maclehose, R.F., Maldonado, G., McCandless, L.C., and
Greenland, S. (2014), “Good Practices for Quantitative Bias Analysis,” In-
ternational Journal of Epidemiology, 43, 1969–1985.

Lecoutre, M.-P., Poitevineau, J., and Lecoutre, B. (2003), “Even Statisticians are
not Immune to Misinterpretations of Null Hypothesis Tests,” International
Journal of Psychology, 38, 37–45.

Lehmann, E.L. (1986), Testing Statistical Hypotheses (2nd ed.), New York, Wi-
ley.

Lew, M.J. (2012), “Bad Statistical Practice in Pharmacology (and Other Basic
Biomedical Disciplines): You Probably Don’t Know P ,” British Journal of
Pharmacology, 166, 1559–1567.

Loftus, G.R. (1996), “Psychology Will be a Much Better Science When We
Change the Way We Analyze Data,” Current Directions in Psychology, 5,
161–171.

Maheshwari, S., Sarraj, A., Kramer, J., and El-Serag, H.B. (2007), “Oral Con-
traception and the Risk of Hepatocellular Carcinoma,” Journal Hepatology,
47, 506–513.

Marshall, S.W. (2006), “Commentary on Making Meaningful Inferences About
Magnitudes,” Sportscience, 9, 43–44.

The American Statistician, Online Supplement 11

http://andrewgelman.com/2014/10/14/didnt-say-part-2/
http://andrewgelman.com/2014/10/14/didnt-say-part-2/


Matthews, J.N.S., and Altman, D.G. (1996a), “Interaction 2: Compare Effect
Sizes not P Values,” British Medical Journal, 313, 808.

(1996b), “Interaction 3: How to Examine Heterogeneity,” British Med-
ical Journal, 313, 862.

Mayo, D.G., and Cox, D.R. (2006), “Frequentist Statistics as a Theory of Induc-
tive Inference,” in Optimality: The Second Erich L. Lehmann Symposium,
Lecture Notes-Monograph Series, J. Rojo (ed.), Hayward, CA: Institute of
Mathematical Statistics (IMS) 49, 77–97.

Mayo, D.G., and Spanos, A. (2006), “Severe Testing as a Basic Concept in a
Neyman-Pearson Philosophy of Induction,” British Journal of Philosophi-
cal Science, 57, 323–357.

Morey, R.D., Hoekstra, R., Rouder, J.N., Lee, M.D., and Wagenmakers, E.-
J. (in press), “The Fallacy of Placing Confidence in Confidence Intervals,”
Psychological Bulletin Review.

Morrison, D.E., and Henkel, R.E. (eds.) (1970), The Significance Test Contro-
versy , Chicago: Aldine.

Murtaugh, P.A. (2014), “In Defense of P-Values” (with discussion), Ecology,
95, 611–653.

Neyman, J. (1937), “Outline of a Theory of Statistical Estimation Based on the
Classical Theory of Probability,” Philospohical Transactions of the Royal
Society of London A, 236, 333–380.

Neyman, J., and Pearson, E.S. (1928), “On the Use and Interpretation of Certain
Test Criteria for Purposes of Statistical Inference: Part I,” Biometrika, 20A,
175–240.

Oakes, M. (1986), Statistical Inference: A Commentary for the Social and Be-
havioural Sciences, Chichester: Wiley.

Page, M.J., McKenzie, J.E., Kirkham, J., Dwan, K., Kramer, S., Green, S., and
Forbes, A. (2014), “Bias Due to Selective Inclusion and Reporting of Out-
comes and Analyses in Systematic Reviews of Randomised Trials of Health-
care Interventions,” Cochrane Database System Reviews, 10:MR000035.

Peace, K. (1988), “Some Thoughts on One-Tailed Tests,” Biometrics, 44, 911–
912.

Pearson, E.S. (1955), “Statistical Concepts in the Relation to Reality,” Journal
fo the Royal Statistical Society, Series B, 17, 204–207.

Petitti, D.B. (2000), Meta-Analysis, Decision Analysis, and Cost-Effectiveness
Analysis: Methods for Quantitative Synthesis in Medicine (2nd ed.), New
York: Oxford University Press.

Phillips, C.V. (2004), “Publication Bias In Situ,” BMC Medical Research and
Methodology, 4, 20.

Pocock, S.J., Hughes, M.D., and Lee, R.J. (1987), “Statistical Problems in the
Reporting of Clinical Trials,” New England Journal of Medicine, 317, 426–
432.

Pocock, S.J., and Ware, J.H. (2009), “Translating Statistical Findings into Plain
English,” The Lancet, 373, 1926–1928.

Poole, C. (1987a), “Beyond the Confidence Interval,” American Journal of Pub-
lic Health, 77, 195–199.

(1987b), “Confidence Intervals Exclude Nothing,” American Journal of
Public Health, 77:, 492–493.

(2001), “Low P-Values or Narrow Confidence Intervals: Which are
More Durable?”, Epidemiology, 12, 291–294.

Pratt, J.W. (1965), “Bayesian Interpretation of Standard Inference Statements,”
Journal of the Royal Statistical Society, Series B, 27, 169–203.

Rosenthal, R., and Rubin, D.B. (1994), “The Counternull Value of an Effect
Size: A New Statistic,” Psychological Science, 5, 329–334.

Rosnow, R.L., and Rosenthal, R. (1989), “Statistical Procedures and the Justi-
fication of Knowledge in Psychological Science,” American Psychologist,
44, 1276–1284.

Rothman, K.J. (1978), “A Show of Confidence,” New England School of
Medicine, 299, 1362–1363.

(1986), “Significance Questing,” Annals of Internal Medicine, 105,
445–447.

Rothman, K.J., Greenland, S., and Lash, T.L. (2008), Modern Epidemiology
(3rd ed.), Philadelphia, PA: Lippincott-Wolters-Kluwer.

Royall, R. (1997), Statistical Evidence, New York: Chapman and Hall.

Rozeboom, W.M. (1960), “The Fallacy of Null-Hypothesis Significance Test,”
Psychological Bulletin, 57, 416–428.

Salsburg, D.S. (1985), “The Religion of Statistics as Practiced in Medical Jour-
nals,” The American Statistician, 39, 220–223.

Schervish, M. (1996), “P-Values: What They are and What They are Not,” The
American Statistician, 50, 203–206.

Schmidt, F.L. (1996), “Statistical Significance Testing and Cumulative Knowl-
edge in Psychology: Implications for Training of Researchers,” Psycholog-
ical Methods, 1, 115–129.

Schmidt, F.L., and Hunter, J.E. (2014), Methods of Meta-Analysis: Correcting
Error and Bias in Research Findings (3rd ed.), Thousand Oaks, CA: Sage.

Sellke, T.M., Bayarri, M.J., and Berger, J.O. (2001), “Calibration of p Values
for Testing Precise Null Hypotheses,” The American Statistician, 55, 62–71.

Senn, S.J. (2001), “Two Cheers for P?Values,” Journal of Epidemiology and
Biostatistics, 6, 193–204.

(2002a), Letter to the Editor re: Goodman 1992, Statistics in Medicine,
21, 2437–2444.

(2002b), “Power is Indeed Irrelevant in Interpreting Completed Stud-
ies,” BMJ, 325, 1304.

Smith, A.H., and Bates, M. (1992), “Confidence Limit Analyses Should Re-
place Power Calculations in the Interpretation of Epidemiologic Studies,”
Epidemiology, 3, 449–452.

Sterne, J.A.C. (2009), Meta-Analysis: An Updated Collection from the Stata
Journal, College Station, TX: Stata Press.

Sterne, J.A.C., and Davey Smith, G. (2001), “Sifting the Evidence—What’s
Wrong with Significance Tests?” British Medical Journal, 322, 226–231.

Stigler, S.M. (1986), The History of Statistics, Cambridge, MA: Belknap Press.

Thompson, B. (2004), “The ‘significance’ Crisis in Psychology and Education,”
The Journal of Socio-Economics, 33, 607–613.

Thompson, W.D. (1987), “Statistical Criteria in the Interpretation of Epidemio-
logic Data,” American Journal of Public Health, 77, 191–194.

Trafimow, D., and Marks, M. (2015), Editorial, Basic and Applied Social Psy-
chology, 37, 1–2.

Wagenmakers, E.-J. (2007), “A Practical Solution to the Pervasive Problem of
p Values,” Psychonomic Bulletin Review, 14, 779–804.

Walker, A.M. (1986), “Reporting the Results of Epidemiologic Studies,” Amer-
ican Journal of Public Health, 76, 556–558.

Ware, J.H., Mosteller, F., and Ingelfinger, J.A. (2009), “ p-Values,” in Medical
Uses of Statistics (3rd ed.), Bailar, J.C. and Hoaglin, D.C. (eds.), Hoboken,
NJ: Wiley, pp. 175–194.

Weinberg, C.R. (2001), “Its Time to Rehabilitate the P-Value,” Epidemiology,
12, 288–290.

Whitehead, A. (2002), Meta-Analysis of Controlled Clinical Trials, New York:
Wiley.

Wood, J., Freemantle, N., King, M., and Nazareth, I. (2014), “Trap of
Trends to Statistical Significance: Likelihood of Near Significant P
Value Becoming More Significant with Extra Data,” BMJ, 348, g2215,
doi:10.1136/bmj.g2215.

Xu, L., Freeman, G., Cowling, B.J., and Schooling, C.M. (2013), “Testosterone
Therapy and Cardiovascular Events Among Men: A Systematic Review and
Meta-analysis of Placebo-Controlled Randomized Trials,” BMC Med., 11,
108.

Yates, F. (1951), “The Influence of Statistical Methods for Research Workers
on the Development of the Science of Statistics,” Journal of the American
Statistical Association, 46, 19–34.

You ,B., Gan, H.K., Pond, G., and Chen, E.X. (2012), “Consistency in the Anal-
ysis and Reporting of Primary End Points in Oncology Randomized Con-
trolled Trials from Registration to Publication: A Systematic Review,” Jour-
nal of Clinical Oncology, 30, 210–216.

Ziliak, S.T., and McCloskey, D.N. (2008), The Cult of Statistical Significance:
How the Standard Error Costs Us Jobs, Justice and Lives, Ann Arbor: U
Michigan Press.

12 Online Supplement to the ASA Statement on Statistical Significance and P-values



American Journal of Epidemiology
© The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of
Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Vol. 186, No. 6
DOI: 10.1093/aje/kwx259

Advance Access publication:
August 21, 2017

Invited Commentary

Invited Commentary: The Need for Cognitive Science inMethodology

Sander Greenland*

*Correspondence to Dr. Sander Greenland, Department of Epidemiology, School of Public Health, University of California,
Los Angeles, Los Angeles, CA 90095 (e-mail contact only; e-mail: lesdomes@ucla.edu).

Initially submitted June 6, 2017; accepted for publication June 7, 2017.

There is no complete solution for the problem of abuse of statistics, but methodological training needs to cover
cognitive biases and other psychosocial factors affecting inferences. The present paper discusses 3 common cog-
nitive distortions: 1) dichotomania, the compulsion to perceive quantities as dichotomous even when dichotomiza-
tion is unnecessary and misleading, as in inferences based on whether a P value is “statistically significant”;
2) nullism, the tendency to privilege the hypothesis of no difference or no effect when there is no scientific basis for
doing so, as when testing only the null hypothesis; and 3) statistical reification, treating hypothetical data distribu-
tions and statistical models as if they reflect known physical laws rather than speculative assumptions for thought
experiments. As commonly misused, null-hypothesis significance testing combines these cognitive problems to
produce highly distorted interpretation and reporting of study results. Interval estimation has so far proven to be an
inadequate solution because it involves dichotomization, an avenue for nullism. Sensitivity and bias analyses have
been proposed to address reproducibility problems (Am J Epidemiol. 2017;186(6):646–647); these methods can
indeed address reification, but they can also introduce new distortions via misleading specifications for bias param-
eters. P values can be reframed to lessen distortions by presenting them without reference to a cutoff, providing
them for relevant alternatives to the null, and recognizing their dependence on all assumptions used in their compu-
tation; they nonetheless require rescaling for measuring evidence. I conclude that methodological development
and training should go beyond coverage of mechanistic biases (e.g., confounding, selection bias, measurement
error) to cover distortions of conclusions produced by statistical methods and psychosocial forces.

behavioral economics; bias analysis; cognitive bias; motivated reasoning; nullism; overconfidence; sensitivity
analysis; significance testing

Abbreviations: CI, confidence interval; NHST, null-hypothesis significance testing; PBA, probabilistic bias analysis; RR, relative
risk.

“[T]here is no shame in not knowing. The problem arises when
irrational thought and attendant behavior fill the vacuum left by
ignorance.”

—Neil deGrasse Tyson (1, p. 38)

METHODOLOGY, LIKE SCIENCE, IS HYPOTHETICAL

In an accompanying article, Dr. Timothy Lash (2) describes
how null-hypothesis significance testing (NHST) has contrib-
uted to problems of reproducibility, and discusses analytical
methods for better capturing uncertainties of inference. These

problems, however, are at least partly attributable to exclusive
focus on random error and mechanistic biases in statistics
while neglecting cognitive biases and other psychosocial fac-
tors affecting scientific inferences. Thus, in the present paper,
I detail 3 cognitive distortions that are aggravated or induced
by NHST: dichotomania, nullism, and reification.

To counter such cognitive problems of inference, the fol-
lowing methodological points need emphasis throughout teach-
ing and research in health, medical, and social sciences:

1. The processes generating our observations are far too
complex for us to capture all of their potentially important
features, and their complete form is mostly beyond correct
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intuitive understanding. Sophistication of a model does not
mitigatemisuse, however, for misuse becomesmore opaque
and tenaciously defensible when the model becomes harder
to understand. Thus, analytical methodology at best provides
frameworks for forcing some degree of logical consistency
into inferential arguments, and examples of how these argu-
ments can gowrong.

2. Methods do not come with real-world guarantees that they
“work” in our application (get us closer to the truth than if
we had ignored their outputs); theoretical “optimality” re-
sults are based on assumptions that are uncertain in reality.
We are thus foolish if we take their uncertainty assessments
(e.g., interval estimates) as sufficient for inference.

3. Inferences demand patient psychological as well as log-
ical analysis, for our intuitions influence our judgments
and in turn are heavily biased by our values, what we
were taught, and what we have taught—however wrong
those teachings are.

4. Statistical analyses are merely thought experiments, in-
forming us as to what would follow deductively under their
assumptions. These hypothetical experiments can train our
intuitions but can also bias our inferences via anchoring
(treating our primary analysis results as a specially up-
weighted reference point, even when there is no empirical
basis for that) (3) and reification (acting as if our models
are physical laws), as typifies rote statistical applications.
These problems contribute to overconfident inference. Mis-
interpretations of statistical tests and their confinement to
NHST are among the most prominent examples.

5. Anymodel that fits the data acceptably well will be only one
of many possible data-generating mechanisms that we can-
not rule out given our limited data and understanding. Sensi-
tivity and bias analysis can help address this fundamental
knowledge limitation but are in no way immune from cogni-
tive distortions. If anything, they offer even more opportu-
nities for misinterpretation and misuse, and may encourage
overconfidence by appearing comprehensive.

I have discussed most of these points elsewhere (4–6), so I
will focus on some specific problems raised by Lash’s articles
(2, 3) that seem neglected in most of the “replication crisis” lit-
erature, along with some limitations of sensitivity and bias
analysis in addressing these problems.

I argue that current training in statistics and analytical
methods is inadequate for addressing major sources of infer-
ence distortion, and that it should be expanded to cover the
biased perceptual and thinking processes (cognitive biases)
that plague research reports. As commonly misused, null-
hypothesis significance testing (NHST) combines several
cognitive problems to create highly distorted interpretations
of study results. Interval estimation has proven highly vul-
nerable to the same problems. Sensitivity and bias analyses
address model uncertainties by varying and relaxing assump-
tions, but (like Bayesian analyses) they are difficult to per-
form with proper accounting for prior information and are
easily manipulated because they depend on specification of
many models and parameters. Surprisingly, P values can be
reframed to lessen cognitive problems by 1) presenting them
without reference to a cutoff, 2) providing them for relevant

alternatives to the null hypothesis, and 3) interpreting them
with reference to all assumptions used in their computation
rather than just the parameter they are tailored to test. P val-
ues, however, are poorly scaled for measuring evidence, a
problem which could be addressed by transforming them
into the information they supply against the model used to
compute them.

THENHST PROBLEMARISES FROMASYNERGY
OFDICHOTOMANIA ANDNULLISM

In his article, Lash (2) gives a telling account of literature
distortions caused by NHST. After the publication of hun-
dreds of papers and books explaining NHST problems over
the past 75 years (e.g., see the citations in Greenland et al.
(7)), it is indeed disheartening that NHST and its variants
remain at the core of most analyses, apart from the relatively
few journals that discourage statistical tests.

Those journals have usually requested the use of confi-
dence intervals instead. Has forcing replacement of testing
with confidence intervals addressed the problems that arose
from NHST? As Lash explains (2), not as much as hoped.
That should be unsurprising, because both confidence inter-
vals and α-level tests were conceived as decision rules for be-
havior (8) but were rapidly misinterpreted as rules for belief,
and thus fed the false notion that a single study can by itself
tell us whether an effect is present or absent. They do so
by degrading continuous measures of evidence into decisive
conclusions, feeding the strong cognitive bias of dichotoma-
nia: the compulsion to replace quantities with dichotomies
(“black-and-white thinking”), even when such dichotomiza-
tion is unnecessary and misleading for inference.

As has long been known (9–11), use of the term “signifi-
cant” or dichotomization of P values by comparing them with
a fixed cutoff serves no good purpose for inference—it is less
misleading and more informative to say (for example) that an
association had a P value of 0.02 instead of “was significant”
or had a P value of 0.17 instead of “was not significant” (12).
Degrading P values and confidence intervals into null tests
blinds the user to actual data patterns (13), thus invalidating
conclusions and sometimes rendering them ludicrous. In a
sadly typical example, one research group claimed that their
study findings conflicted with earlier results because their
estimated risk ratio was 1.20 (95% confidence interval: 0.97,
1.48) as opposed to a previously reported risk ratio of 1.20
(95% confidence interval: 1.09, 1.33) (14). Such idiocies are
easy to find (15, Figure 3; 16; 17, p. 161; 18) and may be why
one journal banned the use of confidence intervals along with
statistical tests (19).

The distortion of focusing on the null value instead of the
entire confidence interval dovetails too well with pressures
to make results sound decisive. This null obsession is the most
destructive pseudoscientific gift that conventional statistics
(both frequentist and Bayesian) has given the modern world.
One of its many damaging manifestations is nullism (also
known as pseudo-skepticism): a religious faith that nature
graces us with null associations in most settings. This faith
should always be challenged within the applied context.
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Instead, it goes unnoticed in the vast majority of education
and practice—often to great harm.

Nullism appears to be a bias in science culture stemming
from ostensibly “skeptical” scientific attitudes, along with ratio-
nal desires to avoid false leads; it has been formalized in statisti-
cal tests designed to counter natural tendencies to see patterns in
noise. The bias is built directly into Bayesian hypothesis testing
in the form of spikes of prior probability placed on null hypothe-
ses. Yet in soft sciences these spikes rarely have any basis in
(and often conflict with) actual prior information (20–25).Medi-
cal research provides typical examples: Drugs and devices are
approved precisely because of evidence that they affect human
physiology, making the null hypothesis of no side effects less
likely than some alternatives (22).

In frequentist hypothesis testing, nullism manifests itself as
an implicit default assumption that false-positive inferences are
always far more costly than false-negative ones. This in turn leads
to adoption of test criteria that minimize false-positive rates no
matter how many true effects are missed, and retardation of the
process of scientific discovery (26). Neyman himself recognized
that nullism is an incorrect general view, noting that false nega-
tives could be more costly than false positives for some stake-
holders (27, pp. 104–108; 28). Consider adverse drug effects:
For the drug manufacturer, a false-negative inference can be
far less costly than a false-positive one. Standard study-design
criteria assume this cost difference with the requirement of a
5% maximum false-positive (type I error) rate and 80% mini-
mum power, corresponding to a 20% maximum false-negative
(type II error) rate and an implicit prior probability that adverse
effects are unlikely. Yet, for a patient receiving the drug, the
cost of a false-negative inference can be far higher (e.g., death
or disability) than the cost of a false-positive one (e.g., having
to use another drug). Thus, in hazard assessment, the tradi-
tional focus on testing only the null hypothesis is biased in favor
of those who would be found liable for harms. This null
bias is increased dramatically by multiple-comparison adjust-
ments, which preserve false-positive rates at the expense of
inflated false-negative rates, without regard to error costs
or prior probabilities.

Some null-biased procedures (such as shrinkage methods) do
have justifications in certain contexts, such as model selection
and exploration; genomics provides examples with biological
arguments for expecting few nonnegligible effects, along with a
need to drastically reduce the number of associations pursued.
Elsewhere, however, nullism seems to reflect a basic human
aversion to admitting ignorance and uncertainty: Rather than
recognize and explain why available evidence is inconclu-
sive, experts freely declare that “the scientific method” treats
the null as true until it is proven false, which is nothing more
than a fallacy favoring those who benefit from belief in the
null (29).Worse, this bias is often justified with wishful biolog-
ical arguments (e.g., that we miraculously evolved toxicologi-
cal defenses that can handle all modern chemical exposures)
and basic epistemic mistakes—notably, thinking that parsi-
mony is a property of nature when it is instead only an effective
learning heuristic (30), or that refutationism involves believing
hypotheses until they are falsified, when instead it involves
never asserting a hypothesis is true (31).

Interval estimation could have addressed these problems had
it been treated as its proponents advised: by careful examination

and discussion of the full range of the interval and its vicinity
to see what uncertainty would remain even if there were no
validity problems, rather than focusing on whether it contained
the null. Alas, this did not happen, and after generations of pleas
for the use of confidence intervals (9, 10, 32, 33), we still see
them being used to encourage dichotomous thinking (inside
the interval vs. outside), nullism (by examining only whether the
null value is within the interval), and overconfident inferences
(as their name encourages).

It seems unappreciated that P values can help address these
problems if they are computed for relevant nonnull hypotheses
(“alternatives”) aswell as the null. For example, it is often claimed
that a study provided evidence against an effect because the
null test was “nonsignificant”with high power; that claim is re-
vealed as wrong and deceptive when the test of an important
alternative is even less significant (34). This information is sup-
plied by a P value function (or confidence distribution) (15, 17,
33, 35), which provides P values for a full range of hypotheses
and confidence intervals for a full range of confidence levels—
thus addressing the criticism that null P values confound effect
size with statistical precision (36). The P value function, or at
least presentation of P values for effect sizes other than the
null, can thus rescue theP value concept from the abuses inher-
ent in NHST.

One-sided P values can further help mitigate nullism by shift-
ing the focus from a precise hypothesis (such as the null), which
is unlikely to be exactly true, to the hypothesis or probability
that the targeted parameter lies in a particular direction (23, 37).
Confidence intervals remain valuable, but only if they are inter-
preted to indicate the uncertainty or precision of the estimates
under themodel used to compute them (38, 39).

INTERPRETATIONSOF PVALUESANDCONFIDENCE
INTERVALS IN AWORLDOFBIAS

Even if we draw a P value function, there remains the prob-
lem of properly interpreting the P values it provides (7). This
problem is compounded when assumptions used in the analy-
sis have not been enforced by the design and conduct of the
study (40). For example, assumptions of “no unmeasured con-
founding” and “conditionally ignorable treatment assignment”
are operationally equivalent to claiming that our data were pro-
duced by some kind of intricately designed randomized experi-
ment, and thus (by definition) are not enforced and are often
doubtful in observational research (23, 41). And the usual
distributional assumptions of statistics can be severely violated
whenever analysis decisions are not captured in the analysis
model (40, 42).

Sensitivity to plausible assumption violations (model depen-
dence) is a major underappreciated weakness of all reasoning.
Even so-called “robust” statistical methods are sensitive to
assumption violations represented by uncontrolled biases.
These violations should be expected in human-subjects research
and render hypothetical any formal statistical inferences about
causation (6). Confronting this reality, one way to make sense
of conventional statistics is to reorient our interpretations to be
unconditional on model assumptions: Instead of thinking of a
P value or confidence interval as referring to a single parameter
(such as amodel coefficient), we can think of it as referring to the
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entiremodel it was computed from, including all assumptions
about bias (especially implicit assumptions) (7).

Traditionally, coefficient tests are taken to refer only to the
assumption that the coefficient equals the tested value, given all
the other model assumptions. This tradition is pernicious when-
ever (as is always the case in soft sciences) the other model
assumptions are far from guaranteed: All inferential statistics
(whether P values, confidence intervals, likelihood ratios, or
posterior probabilities) are heavily influenced by violations
of validity assumptions arising from uncontrolled nonlinearity,
confounding, measurement error, selection bias, P-hacking, or
fraud. Because almost all assumptions are uncertain, a small
P value only signals that there may be a problem with at least
1 assumption, without saying which one. Asymmetrically, a
large P value only means that this particular test did not detect
a problem—perhaps because there is none, or because the test
is insensitive to the problems, or because biases and random
errors largely canceled each other out. We recognize these
possibilities when we admit that results (whether with small or
large P values) may be “due to chance or bias.”

Uncertainty about validity assumptions is not captured by
standard testing descriptions—in fact, assumption uncertainty
is a core weakness of conventional statistics, which depends on
reification to connect its outputs to the real world. This weak-
ness can be addressed by recognizing that a P value does not
test only 1 hypothesis if the other assumptions are uncertain.
Rather, it is a test of every assumption used to compute the test
(24, p. 75). For example, a so-called null test is really a test of a
model comprising all assumptions used to compute the P value,
including validity assumptions as well as the null hypothesis.
This is so even if the test is tailored hypothetically to have “high
power” for the targeted parameter (i.e., derived to maximize
power to detect violations along the particular dimension speci-
fied by the null hypothesis).

P VALUESANDEVIDENCEMEASURES

Although Bayesians have raised important criticisms of sig-
nificance testing, they often overlook limitations of Bayesian
inference (43, 44) and sometimes claim that P values overstate
evidence against the null (45–47). That claim ismistaken inso-
far as it blames the P value for misinterpretations by teachers
and users of statistics; furthermore, it is based on a Bayesian
standard of evidence (the Bayes factor) which is of doubtful
validity for evaluating refutational measures like the frequen-
tistP value (20, 48).

A genuine cognitive problem is that a P value forces the
test statistic into the unit (0–1) scale, which renders it a
highly nonlinear and nonintuitive function of data informa-
tion. One way to address this problem is to treat a P value not
as an evidence measure but instead as merely an index of
compatibility between the test statistic and the model (set of
all assumptions) used to compute the P value, on a scale of 0
to 1, where 0 = completely incompatible (statistic impossi-
ble under the model) and 1 = completely compatible (statistic
exactly as predicted by the model) (7). The refutational strength
of a P value, however, can be gauged by translating it into the
bits of information it supplies against the model. For a P value
of p, this quantity is –log2(p), called the surprisal (49) in seeing

an event of probability p if the model is correct. This measure
is 0 (unsurprising) when P = 1, and it increases exponentially
as P declines. The number of bits of information against the
model supplied by P = 0.05 is then only −log2(0.05) = 4.3;
this is about as surprising as seeing 4 heads in 4 fair coin
tosses, which has a probability of 1/24 = 0.0625, thus con-
veying −log2(1/24) = 4 bits of information against fairness of
the tosses. For comparison, P = 0.01 and P = 0.09 translate
to −log2(0.01) = 6.6 and −log2(0.09) = 3.5. Thus, any evi-
dence overstatement lies not with the P value but with 0.05-
dichotomaniacs who mistakenly think that P = 0.05 represents
just enough evidence to reject the model, instead of recognizing
it as a small amount of evidence against the model.

BEYONDCONVENTIONAL STATISTICS: THE PERILOUS
QUEST FORREALISTIC ANDRELEVANTMETHODS

To place sensitivity and bias analyses in the generalized-
model framework described above, consider an adjusted rela-
tive risk (RR) parameter RRadj as estimated by the usual sort of
risk regression, propensity scoring, or some combination (such
as doubly robust regression). Conventional statistics only refer
to RRadj because that is all one can identify without introducing
external (“prior”) information about the function connecting it
to the targeted causal relative risk RRcausal. In methodology,
this profound knowledge gap is usually dealt with by saying
that the statistics refer to RRcausal conditional on the adjustments
being sufficient to remove bias. This treatment dodges the fact
that RRadj is actually a complex, unknown function of the target
effect RRcausal, the data, and various unknown bias parameters,
so that tests and estimates of RRadj omit major sources of uncer-
tainty about the effect RRcausal and by themselves place no limit
on its size.

Ideally, study-design features would identify the bias function
or even force RRadj to equal RRcausal, but nothing so ambitious
can be achieved in typical observational studies. Inferences
derived from statistical analysis may nonetheless appear com-
pelling simply because they are plausible in light of what is
known. This plausibility may lull one into forgetting that other
analyses may fit the same data equally well using plausible but
very different assumptions about the bias function, and thus
lead to very different inferences. In the philosophy of science,
this logical limit of knowledge is known as the underdetermina-
tion of scientific theories by observations (50), and it corre-
sponds to statistical nonidentification of the bias function
linking RRadj to RRcausal.

Statistics traditionally deals with this problem by forcing
identification of RRcausal using some conventional model with-
out worrying too much about whether the model is remotely
plausible, instead appealing to insensitive tests of fit. Bias analy-
sis tries to reintroduce plausibility by estimating the function
connecting RRadj to RRcausal from a combination of background
information (such as validation studies), arbitrary specifications
(such as distributional shapes and independencies), and what lit-
tle data information there may be on residual bias. The assump-
tions introduced are hopefully less absurd than claiming
RRadj = RRcausal, but there is no guarantee that this is so (e.g.,
as with absurd assumptions that bias parameters are uniformly
distributed or are independent between cases and controls).
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Even with realistic choices, the sensitivity of sensitivity and
bias analyses must be evaluated (51). The plausibility of an
estimated bias function is determined by intuitions, prejudices,
and understanding of the applied context; those can vary dra-
matically across researchers, in turn leading to very different
specifications and inferences even if they are anchored to the
same conventional analysis. Adding to this problem, sensitiv-
ity and bias analyses are more difficult to perform correctly and
more easily massaged toward preferred conclusions, because
they require specification of manymore equations and their pa-
rameters. And unlike NHST, abuse of sensitivity and bias analy-
sis is as yet barely studied because the pool of such analyses
remains small and highly selective. It thus seems implausible
that these analyses will increase replicability of inferences,
although they can reveal how assumptions affect those infer-
ences. (Here “replicability” is used according to recommenda-
tions of the American Statistical Association (52) to denote
independent checks of reported results with new data; “repro-
ducibility” then denotes checks of reported results using the
original data and computer code.)

As with Bayesian statistical methods, probabilistic bias anal-
ysis (PBA)—including Bayesian bias analysis as well as prob-
abilistic sensitivity analysis—is especially hazardous because
of poor defaults and intuitions regarding prior distributions for
parameters (53, pp. 369–372). One may thus doubt whether
individual studies should go so far as a full PBA (53, pp. 347
and 380). Among the objections (which also apply to other
sophisticated analysis methods):

1. No inference should be based on a single study alone, even
if that study was designed to be the final input into a policy
decision. Research synthesis is needed to reach reliable in-
ferences, and that requires detailed methods and data descrip-
tions for each study. It would thus be damaging if publications
omitted such details in favor of PBA, which itself requires
lengthy description.

2. Like any analysis, PBA is simply a thought experiment
predicated on assumptions that may be in error, with out-
puts highly sensitive to those assumptions. But the sophisti-
cation of PBAmay seduce users into making overconfident
claims about the analysis results, and may increase anchor-
ing of subsequent judgments to those results.

3. Researchers and referees have demonstrated severe problems
in using basic ideas like P values and confidence intervals
correctly. Should we expect fewer problemswith sensitivity
and bias analyses? Especially, PBA is an order of magni-
tudemore subtle and complex, requiring integration of mul-
tiple uncertainty sources and models. Complex models
increase the potential for oversights and hidden errors.

4. The unlimited sensitivity of effect estimates from bias
models implies that any desired inference can be manu-
factured by back-calculating to the plausible-looking mod-
els and priors that produce it, thus providing an avenue for
motivated statistical reasoning (54). Analysts can completely
deceive readers (and themselves) by failing to report result-
driven analysis selection.

A narrower concern is the relatively untested nature of PBA soft-
ware. As an example, a bug in one meta-analytical PBA (55)
was only discovered years later when a colleague attempted to

reproduce the results using other software (Dr. Timothy Mak,
University of Hong Kong, personal communication, 2010);
fortunately, the correction did not alter the main inference
that the studies being combined failed to establish anything
(thus illustrating a major robustness advantage of ambiguous
conclusions).

None of the above argues against the potential value of well-
done, transparent PBA for research synthesis to inform decisions
and policy. In fact, one can demand PBA in support of contest-
able claims about policy implications (53, pp. 347 and 380). But
warnings against policy claims within single studies (56) extend
to PBA: Like policy analysis, PBA remains a highly technical
topic in its own right, demanding well-developed methods
such as posterior sampling alongside as-yet-underdeveloped
methods such as prior modeling (by which I do notmean prior
elicitation, but rather extraction and coding of relevant infor-
mation from other studies). Thus, as with policy analysis, the
effort and detailed reporting needed for good PBA requires
its own article, which may be hard to justify when conventional
methods yield ambiguous results.

CONCLUSIONS

Viewing the distortions generated by conventional statistical
teaching and practice, I see a dire need to get away from infer-
ential statistics and hew more closely to descriptions of study
procedures, data collection (which may have occurred before
the study), and the resulting data. This recommendation runs
against ambitions and pressures on authors to expound on the
implications of their own studies, however biased and naive
their exposition. But what science and society need most from
a study is its data (or numerical summaries that allow adequate
reconstruction of the data) and thorough documentation of
how those data were generated, so that sources of uncertainty
can be recognized and the study information can be accu-
rately entered into research syntheses (57).

Instead, conventional statistical training seems to encourage
human tendencies toward overconfidence and conclusiveness
by providing numerically precise answers to hypothetical ex-
periments and decision problems. The artificial problems that
conventional statistics solves are often far removed from the
actual research contexts in soft sciences like health and medi-
cine. NHST is value-biased as well, with implicit loss functions
that would be unacceptable to many stakeholders—if they were
revealed (5, 8, 26–28). Decades of piecemeal objections to the
resulting abuses have reduced distortions in epidemiology, but
the core problems remain common in the broader literature.

I am thus unable to escape the inference that training in sta-
tistics and analytical methods has shown itself deficient in ad-
dressing major sources of inference distortion.We can begin to
address this deficiency by adding overviews of the now-vast
literature on cognitive biases and debiasing techniques (58–61)
to basic statistics and methods courses (for 2 decades, I used a
text by Gilovich (62), a $10 paperback, in my course on logic,
causation, and probability; a Web search on “cognitive biases”
will reveal many up-to-date nontechnical treatments of the
topic (63–66)). We also need to investigate how cognitive
biases have affected research literature. Methodologists
should formulate these teaching and research programs
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collaboratively with experts in cognitive sciences, social psy-
chology, and behavioral economics, paying special attention
to biases in methodology as well as in reported inferences.
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